Role of Compatible Solutes in Alleviating Effect of Abiotic Stress in Plants
DOI:
https://doi.org/10.53575/irjei.v3.01.14(22)141-153Keywords:
Abiotic stresses, organic solutesAbstract
Plants face assorted of abiotic stresses such as, salinity, drought and heavy metals which produce ROS, and finally inhibit normal growth plant production. To stop cellular destruction due to oxidative stress, these abiotic stresses increase complex reactions in plants to avoid damage and boost their sustainability under severe stress situations. Plants produce several organic solutes known as osmoprotectant such as, polyamines, sugars, proline and glycinebetaine (GB), to adjust the cellular mechanism and stable the membrane structure and proteins towards environmental stress. As well, they also defend the plant cells from oxidative stress by stopping the accumulation of damaging effect of ROS. In this review, we have deliberated the mechanisms of organic solutes as well as several functions in plants under abiotic stress situations. The organic solutes that are also known as osmolytes/osmoprotectants comprise soluble sugars, proline and glycinebetaine.
References
Aamer, M., Muhammad, U. H., Li, Z., Abid, A., Su, Q., Liu, Y., & Huang, G. (2018). Foliar application of glycinebetaine (GB) alleviates the cadmium (Cd) toxicity in spinach through reducing Cd uptake and improving the activity of anti-oxidant system. Applied Ecology and Environmental Research, 16(6), 7575-7583.
Ahmed, S., Ahmed, S., Roy, S. K., Woo, S. H., Sonawane, K. D., & Shohael, A. M. (2019). Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agriculture, 4(1), 361-373.
Alam, R., Das, D. K., Islam, M. R., Murata, Y., & Hoque, M. A. (2016). Exogenous proline enhances nutrient uptake and confers tolerance to salt stress in maize (Zea mays L.). Progressive agriculture, 27(4), 409-417.
Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment, 24(12), 1337-1344.
Ali, S., Abbas, Z., Seleiman, M. F., Rizwan, M., Yava?, ?., Alhammad, B. A., & Kalderis, D. (2020). Glycine betaine accumulation, significance and interests for heavy metal tolerance in plants. Plants, 9(7), 896.
Ali, S., Chaudhary, A., Rizwan, M., Anwar, H. T., Adrees, M., Farid, M., & Anjum, S. A. (2015). Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environmental Science and Pollution Research, 22(14), 10669-10678.
Anjum, S. A., Tanveer, M., Hussain, S., Shahzad, B., Ashraf, U., Fahad, S., & Tung, S. A. (2016). Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environmental Science and Pollution Research, 23(12), 11864-11875.
Ashraf, M. F. M. R., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and experimental botany, 59(2), 206-216.
Ashraf, M., & Karim, F. (1991). Screening of some cultivars/lines of black gram (Vigna mungo L. Hepper) for resistance to water stress. Trop. Agric, 68, 57-62.
Begum, N., Ahanger, M. A., Su, Y., Lei, Y., Mustafa, N. S. A., Ahmad, P., & Zhang, L. (2019). Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants, 8(12), 579.
Bhatti, K. H., Anwar, S., Nawaz, K., Hussain, K., Siddiqi, E. H., Sharif, R. U., & Khalid, A. (2013). Effect of exogenous application of glycinebetaine on wheat (Triticum aestivum L.) under heavy metal stress. Middle-East J Sci Res, 14(1), 130-137.
Borgo, L., Marur, C. J., & Vieira, L. G. E. (2015). Effects of high proline accumulation on chloroplast and mitochondrial ultrastructure and on osmotic adjustment in tobacco plants. Acta Scientiarum. Agronomy, 37, 191-199.
Cheng, C., Pei, L. M., Yin, T. T., & Zhang, K. W. (2018). Seed treatment with glycine betaine enhances tolerance of cotton to chilling stress. The Journal of Agricultural Science, 156(3), 323-332.
Cheng, C., Pei, L. M., Yin, T. T., & Zhang, K. W. (2018). Seed treatment with glycine betaine enhances tolerance of cotton to chilling stress. The Journal of Agricultural Science, 156(3), 323-332.
Conde, A., Silva, P., Agasse, A., Conde, C., & Gerós, H. (2011). Mannitol transport and mannitol dehydrogenase activities are coordinated in Olea europaea under salt and osmotic stresses. Plant and Cell Physiology, 52(10), 1766-1775.
Dhir, B., Nasim, S. A., Samantary, S., & Srivastava, S. (2012). Assessment of osmolyte accumulation in heavy metal exposed Salvinia natans. International Journal of Botany.
Dikilitas, M., Karakas, S., & Ahmad, P. (2018). Predisposition of crop plants to stress is directly related to their DNA health. In Plant Microbiome: Stress Response (pp. 233-254). Springer, Singapore.
Din, J., Khan, S. U., Ali, I., & Gurmani, A. R. (2011). Physiological and agronomic response of canola varieties to drought stress. J Anim Plant Sci, 21(1), 78-82.
Duman, F., Aksoy, A., Aydin, Z., & Temizgul, R. (2011). Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant (Lemna gibba L.). Water, Air, & Soil Pollution, 217(1), 545-556.
El Moukhtari, A., Cabassa-Hourton, C., Farissi, M., & Savouré, A. (2020). How does proline treatment promote salt stress tolerance during crop plant development?. Frontiers in plant science, 11, 1127.
Elhakem, A. (2020). Salicylic acid ameliorates salinity tolerance in maize by regulation of phytohormones and osmolytes. Plant, Soil and Environment, 66(10), 533-541.
Farissi, M., Bouizgaren, A., Faghire, M., Bargaz, A., & Ghoulam, C. (2011). Agro-physiological responses of Moroccan alfalfa (Medicago sativa L.) populations to salt stress during germination and early seedling stages. Seed Science and Technology, 39(2), 389-401.
Farissi, M., Ghoulam, C., & Bouizgaren, A. (2013). Changes in water deficit saturation and photosynthetic pigments of alfalfa populations under salinity and assessment of proline role in salt tolerance. Agric. Sci. Res. J, 3(1), 29-35.
Gajewska, E., & Sk?odowska, M. (2005). Antioxidative responses and proline level in leaves and roots of pea plants subjected to nickel stress. Acta Physiologiae Plantarum, 27(3), 329-340.
Giri, J. (2011). Glycinebetaine and abiotic stress tolerance in plants. Plant signaling & behavior, 6(11), 1746-1751.
Gupta, N., & Thind, S. (2015). Improving photosynthetic performance of bread wheat under field drought stress by foliar applied glycine betaine. Journal of Agricultural Science and Technology, 17(1), 75-86.
Gupta, N., & Thind, S. (2015). Improving photosynthetic performance of bread wheat under field drought stress by foliar applied glycine betaine. Journal of Agricultural Science and Technology, 17(1), 75-86.
Hare, P. D., & Cress, W. A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant growth regulation, 21(2), 79-102.
Hayat, K., Khan, J., Khan, A., Ullah, S., Ali, S., & Fu, Y. (2021). Ameliorative Effects of Exogenous Proline on Photosynthetic Attributes, Nutrients Uptake, and Oxidative Stresses under Cadmium in Pigeon Pea (Cajanus cajan L.). Plants, 10(4), 796.
Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: a review. Plant signaling & behavior, 7(11), 1456-1466.
Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: a review. Plant signaling & behavior, 7(11), 1456-1466.
Hoque, M. A., Banu, M. N. A., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2008). Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. Journal of plant physiology, 165(8), 813-824.
Hua, B., & Yuguo, W. (2002). Effect of exogenous proline on SOD and POD activity for soybean callus under salt stress. Acta Agriculturae Boreali-Sinica, 17(3), 37-40.
Hubbard, M., Germida, J., & Vujanovic, V. (2012). Fungal endophytes improve wheat seed germination under heat and drought stress. Botany, 90(2), 137-149.
Iqbal, N., Ashraf, M. Y., & Ashraf, M. (2005). Influence of water stress and exogenous glycinebetaine on sunflower achene weight and oil percentage. International Journal of Environmental Science & Technology, 2(2), 155-160.
Jabeen, M., Akram, N. A., Ashraf, M., Alyemeni, M. N., & Ahmad, P. (2021). Thiamin stimulates growth and secondary metabolites in turnip (Brassica rapa L.) leaf and root under drought stress. Physiologia Plantarum, 172(2), 1399-1411.
Jabeen, M., Akram, N. A., Ashraf, M., & Aziz, A. (2019). Assessment of biochemical changes in spinach (Spinacea oleracea L.) subjected to varying water regimes. Sains Malaysiana, 48(3), 533-541.
Jabeen, N., Abbas, Z., Iqbal, M., Rizwan, M., Jabbar, A., Farid, M., & Abbas, F. (2016). Glycinebetaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Archives of Agronomy and Soil Science, 62(5), 648-662.
Jagendorf, A. T., & Takabe, T. (2001). Inducers of glycinebetaine synthesis in barley. Plant Physiology, 127(4), 1827-1835.
Júnior, D. F., Gaion, L. A., Júnior, G. S., Santos, D. M. M., & Carvalho, R. F. (2018). Drought-induced proline synthesis depends on root-to-shoot communication mediated by light perception. Acta physiologiae plantarum, 40(1), 1-5.
Kahlaoui, B., Hachicha, M., Misle, E., Fidalgo, F., & Teixeira, J. (2018). Physiological and biochemical responses to the exogenous application of proline of tomato plants irrigated with saline water. Journal of the Saudi Society of Agricultural Sciences, 17(1), 17-23.
Kawakami, A., Sato, Y., & Yoshida, M. (2008). Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. Journal of Experimental Botany, 59(4), 793-802.
Kaya, C., Ashraf, M., Wijaya, L., & Ahmad, P. (2019). The putative role of endogenous nitric oxide in brassinosteroid-induced antioxidant defence system in pepper (Capsicum annuum L.) plants under water stress. Plant Physiology and Biochemistry, 143, 119-128.
Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in plant science, 6, 462.
Khedr, A. H. A., Abbas, M. A., Wahid, A. A. A., Quick, W. P., & Abogadallah, G. M. (2003). Proline induces the expression of salt?stress?responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt?stress. Journal of experimental botany, 54(392), 2553-2562.
Kishor, P. K., Sangam, S., Amrutha, R. N., Laxmi, P. S., Naidu, K. R., Rao, K. S.,& Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current science, 424-438.
Kohli, S. K., Handa, N., Sharma, A., Gautam, V., Arora, S., Bhardwaj, R., & Ahmad, P. (2018). Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings. Protoplasma, 255(1), 11-24.
Kumar Tewari, A., & Charan Tripathy, B. (1998). Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant physiology, 117(3), 851-858.
Kurepin, L. V., Ivanov, A. G., Zaman, M., Pharis, R. P., Allakhverdiev, S. I., Hurry, V., & Hüner, N. P. (2015). Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynthesis research, 126(2), 221-235.
Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K. J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants, 8(4), 94.
Li, J., Pandeya, D., Nath, K., Zulfugarov, I. S., Yoo, S. C., Zhang, H., & Paek, N. C. (2010). Zebra?necrosis, a thylakoid?bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. The Plant Journal, 62(4), 713-725.
Lone, M. I., Kueh, J. S. H., Wyn Jones, R. G., & Bright, S. W. J. (1987). Influence of proline and glycinebetaine on salt tolerance of cultured barley embryos. Journal of Experimental Botany, 38(3), 479- Mansour, M. M. F. (1998). Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. Plant Physiology and Biochemistry, 36(10), 767-772.490.
Lutts, S. (2000). Exogenous glycinebetaine reduces sodium accumulation in salt-stressed rice plants. International Rice Research Notes, 25(2), 39-40.
Masouleh, S. S. S., Aldine, N. J., & Sassine, Y. N. (2020). The role of organic solutes in the osmotic adjustment of chilling-stressed plants (vegetable, ornamental and crop plants). Ornamental Horticulture, 25, 434-442.
Masouleh, S. S. S., Aldine, N. J., & Sassine, Y. N. (2020). The role of organic solutes in the osmotic adjustment of chilling-stressed plants (vegetable, ornamental and crop plants). Ornamental Horticulture, 25, 434-442.
Muhammad, I., Shalmani, A., Ali, M., Yang, Q. H., Ahmad, H., & Li, F. B. (2021). Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Frontiers in Plant Science, 11, 2310.
Nawaz, K., Talat, A., Hussain, K., & Majeed, A. (2010). Induction of salt tolerance in two cultivars of sorghum (Sorghum bicolor L.) by exogenous application of proline at seedling stage. World Applied Sciences Journal, 10(1), 93-99.
Nayyar, H., Chander, K., Kumar, S., & Bains, T. (2005). Glycine betaine mitigates cold stress damage in chickpea. Agronomy for sustainable development, 25(3), 381-388.
Nusrat, N., Shahbaz, M., & Perveen, S. (2014). Modulation in growth, photosynthetic efficiency, activity of antioxidants and mineral ions by foliar application of glycinebetaine on pea (Pisum sativum L.) under salt stress. Acta physiologiae plantarum, 36(11), 2985-2998.
Okuma, E., Murakami, Y., Shimoishi, Y., Tada, M., & Murata, Y. (2004). Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Science and Plant Nutrition, 50(8), 1301-1305.
Ozturk, M., Turkyilmaz Unal, B., García?Caparrós, P., Khursheed, A., Gul, A., & Hasanuzzaman, M. (2021). Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum, 172(2), 1321-1335.
Park, E. J., Jeknic, Z., & Chen, T. H. (2006). Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant and cell physiology, 47(6), 706-714.
Rady, M. M., Ku?vuran, A., Alharby, H. F., Alzahrani, Y., & Ku?vuran, S. (2019). Pretreatment with proline or an organic bio-stimulant induces salt tolerance in wheat plants by improving antioxidant redox state and enzymatic activities and reducing the oxidative stress. Journal of Plant Growth Regulation, 38(2), 449-462.
Rajasheker, G., Jawahar, G., Jalaja, N., Kumar, S. A., Kumari, P. H., Punita, D. L., ... & Kishor, P. B. K. (2019). Role and regulation of osmolytes and ABA interaction in salt and drought stress tolerance. In Plant signaling molecules (pp. 417-436). Woodhead Publishing.
Reda, F., & Mandoura, H. M. (2011). Response of enzymes activities, photosynthetic pigments, proline to low or high temperature stressed wheat plant (Triticum aestivum L.) in the presence or absence of exogenous proline or cysteine. International Journal of Academic Research, 3(4), 108-115.
Saed-Moucheshi, A., Razi, H., Dadkhodaie, A., Ghodsi, M., & Dastfal, M. (2019). Association of biochemical traits with grain yield in triticale genotypes under normal irrigation and drought stress conditions. Australian Journal of Crop Science, 13(2), 272-281.
Shafi, M., Bakht, J., Hassan, M. J., Raziuddin, M., & Zhang, G. (2009). Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). Bulletin of environmental contamination and toxicology, 82(6), 772-776.
Sharma, A., Kumar, V., Yuan, H., Kanwar, M. K., Bhardwaj, R., Thukral, A. K., & Zheng, B. (2018). Jasmonic acid seed treatment stimulates insecticide detoxification in Brassica juncea L. Frontiers in plant science, 9, 1609.
Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 2452.
Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of experimental botany, 57(4), 711-726. Physiology and Molecular Biology, 30(5), 496-502.
Sidhu, G. P. S., Singh, H. P., Batish, D. R., & Kohli, R. K. (2017). Appraising the role of environment friendly chelants in alleviating lead by Coronopus didymus from Pb-contaminated soils. Chemosphere, 182, 129-136.
Singh, A., Sengar, K., Sharma, M. K., Sengar, R. S., & Garg, S. K. (2018). Proline metabolism as sensors of abiotic stress in sugarcane. Biotechnology to enhance sugarcane productivity and stress tolerance, 265-284.
Singh, M., Kumar, J., Singh, S., Singh, V. P., & Prasad, S. M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Bio/Technology, 14(3), 407-426.
Sulpice, R., Tsukaya, H., Nonaka, H., Mustardy, L., Chen, T. H., & Murata, N. (2003). Enhanced formation of flowers in salt?stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. The Plant Journal, 36(2), 165-176.
Sumithra, K., Jutur, P. P., Carmel, B. D., & Reddy, A. R. (2006). Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism. Plant Growth Regulation, 50(1), 11-22.
Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in plant science, 15(2), 89-97.
Tang, W., & Luo, C. (2018). Overexpression of zinc finger transcription factor ZAT6 enhances salt tolerance. Open life sciences, 13(1), 431-445.
Tiwari, S., & Lata, C. (2018). Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Frontiers in plant science, 9, 452.
Trovato, M., Mattioli, R., & Costantino, P. (2008). Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei, 19(4), 325-346.
Upadhyaya, H., Sahoo, L., & Panda, S. K. (2013). Molecular physiology of osmotic stress in plants. In Molecular stress physiology of plants (pp. 179-192). Springer, India.
Verslues, P. E., & Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. The Arabidopsis Book/American Society of Plant Biologists, 8.
Wang, Y. M., Meng, Y. L., & Nii, N. (2004). Changes in glycine betaine and related enzyme contents in Amaranthus tricolor under salt stress. Journal of Plant
Weretilnyk, E. A., Bednarek, S., McCue, K. F., Rhodes, D., & Hanson, A. D. (1989). Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons. Planta, 178(3), 342-352.
Xu, Z. S., Xia, L. Q., Chen, M., Cheng, X. G., Zhang, R. Y., Li, L. C., & Ma, Y. Z. (2007). Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant molecular biology, 65(6), 719-732.
Yadav, S. K. (2010). Cold stress tolerance mechanisms in plants. A review. Agronomy for sustainable development, 30(3), 515-527.
Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., & Yoshiba, Y. (2005). Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany, 56(417), 1975-1981.